Package: parameters 0.23.0.11

Daniel Lüdecke

parameters: Processing of Model Parameters

Utilities for processing the parameters of various statistical models. Beyond computing p values, CIs, and other indices for a wide variety of models (see list of supported models using the function 'insight::supported_models()'), this package implements features like bootstrapping or simulating of parameters and models, feature reduction (feature extraction and variable selection) as well as functions to describe data and variable characteristics (e.g. skewness, kurtosis, smoothness or distribution).

Authors:Daniel Lüdecke [aut, cre], Dominique Makowski [aut], Mattan S. Ben-Shachar [aut], Indrajeet Patil [aut], Søren Højsgaard [aut], Brenton M. Wiernik [aut], Zen J. Lau [ctb], Vincent Arel-Bundock [ctb], Jeffrey Girard [ctb], Christina Maimone [rev], Niels Ohlsen [rev], Douglas Ezra Morrison [ctb], Joseph Luchman [ctb]

parameters_0.23.0.11.tar.gz
parameters_0.23.0.11.zip(r-4.5)parameters_0.23.0.11.zip(r-4.4)parameters_0.23.0.11.zip(r-4.3)
parameters_0.23.0.11.tgz(r-4.4-any)parameters_0.23.0.11.tgz(r-4.3-any)
parameters_0.23.0.11.tar.gz(r-4.5-noble)parameters_0.23.0.11.tar.gz(r-4.4-noble)
parameters_0.23.0.11.tgz(r-4.4-emscripten)parameters_0.23.0.11.tgz(r-4.3-emscripten)
parameters.pdf |parameters.html
parameters/json (API)
NEWS

# Install 'parameters' in R:
install.packages('parameters', repos = c('https://easystats.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/easystats/parameters/issues

Datasets:

On CRAN:

betabootstrapciconfidence-intervalsdata-reductioneasystatsfafeature-extractionfeature-reductionhacktoberfestparameterspcapvaluesregression-modelsrobust-statisticsstandardizestandardized-estimatesstatistical-models

15.52 score 438 stars 53 packages 1.5k scripts 81k downloads 86 exports 3 dependencies

Last updated 2 days agofrom:643b477820. Checks:OK: 1 WARNING: 6. Indexed: yes.

TargetResultDate
Doc / VignettesOKNov 19 2024
R-4.5-winWARNINGNov 19 2024
R-4.5-linuxWARNINGNov 19 2024
R-4.4-winWARNINGNov 19 2024
R-4.4-macWARNINGNov 19 2024
R-4.3-winWARNINGNov 19 2024
R-4.3-macWARNINGNov 19 2024

Exports:bootstrap_modelbootstrap_parameterscici_betwithinci_kenwardci_ml1ci_satterthwaiteclosest_componentcluster_analysiscluster_centerscluster_discriminationcluster_metacluster_performancecompare_modelscompare_parametersconfidence_curveconsonance_functionconvert_efa_to_cfadegrees_of_freedomdemeandescribe_distributiondisplaydofdof_betwithindof_kenwarddof_ml1dof_satterthwaitedominance_analysisefa_to_cfaequivalence_testfactor_analysisformat_df_adjustformat_orderformat_p_adjustformat_parametersget_scoreskurtosismodel_parametersn_clustersn_clusters_dbscann_clusters_elbown_clusters_gapn_clusters_hclustn_clusters_silhouetten_componentsn_factorsn_parametersp_calibratep_directionp_functionp_significancep_valuep_value_betwithinp_value_kenwardp_value_ml1p_value_satterthwaiteparametersparameters_typepool_parametersprincipal_componentsprint_htmlprint_mdprint_tablerandom_parametersreduce_datareduce_parametersrescale_weightsreshape_loadingsrotated_datase_kenwardse_satterthwaiteselect_parameterssimulate_modelsimulate_parametersskewnesssort_parametersstandard_errorstandardise_infostandardise_parametersstandardise_posteriorsstandardize_infostandardize_namesstandardize_parametersstandardize_posteriorssupported_modelsvisualisation_recipe

Dependencies:bayestestRdatawizardinsight

Overview of Vignettes

Rendered fromoverview_of_vignettes.Rmdusingknitr::rmarkdownon Nov 19 2024.

Last update: 2023-06-01
Started: 2021-02-16

Readme and manuals

Help Manual

Help pageTopics
Model bootstrappingbootstrap_model bootstrap_model.default
Parameters bootstrappingbootstrap_parameters bootstrap_parameters.default
Between-within approximation for SEs, CIs and p-valuesci_betwithin dof_betwithin p_value_betwithin
Kenward-Roger approximation for SEs, CIs and p-valuesci_kenward dof_kenward p_value_kenward se_kenward
"m-l-1" approximation for SEs, CIs and p-valuesci_ml1 dof_ml1 p_value_ml1
Satterthwaite approximation for SEs, CIs and p-valuesci_satterthwaite dof_satterthwaite p_value_satterthwaite se_satterthwaite
Confidence Intervals (CI)ci.default
Cluster Analysiscluster_analysis
Find the cluster centers in your datacluster_centers
Compute a linear discriminant analysis on classified cluster groupscluster_discrimination
Metaclusteringcluster_meta
Performance of clustering modelscluster_performance cluster_performance.hclust
Compare model parameters of multiple modelscompare_models compare_parameters
Conversion between EFA results and CFA structureconvert_efa_to_cfa convert_efa_to_cfa.fa efa_to_cfa
Degrees of Freedom (DoF)degrees_of_freedom dof
Print tables in different output formatsdisplay.equivalence_test_lm display.parameters_efa display.parameters_efa_summary display.parameters_model display.parameters_sem print_table
Dominance Analysisdominance_analysis
Equivalence testequivalence_test.ggeffects equivalence_test.lm
Principal Component Analysis (PCA) and Factor Analysis (FA)closest_component factor_analysis predict.parameters_efa principal_components print.parameters_efa rotated_data sort.parameters_efa
Sample data setfish
Format the name of the degrees-of-freedom adjustment methodsformat_df_adjust
Order (first, second, ...) formattingformat_order
Format the name of the p-value adjustment methodsformat_p_adjust
Parameter names formattingformat_parameters format_parameters.default
Print comparisons of model parametersformat.compare_parameters print.compare_parameters print_html.compare_parameters print_md.compare_parameters
Print model parametersformat.parameters_model print.parameters_model print_html.parameters_model print_md.parameters_model summary.parameters_model
Get Scores from Principal Component Analysis (PCA)get_scores
Model Parametersmodel_parameters parameters
Parameters from ANOVAsmodel_parameters.aov
Parameters from Bayesian Exploratory Factor Analysismodel_parameters.befa
Parameters from BayesFactor objectsmodel_parameters.BFBayesFactor
Parameters from Generalized Additive (Mixed) Modelsmodel_parameters.cgam
Parameters from Bayesian Modelsmodel_parameters.brmsfit model_parameters.data.frame
Parameters from (General) Linear Modelsmodel_parameters.default
Parameters from Hypothesis Testingmodel_parameters.glht
Parameters from special modelsmodel_parameters.glimML
Parameters from Mixed Modelsmodel_parameters.glmmTMB
Parameters from Cluster Models (k-means, ...)model_parameters.hclust
Parameters from hypothesis testsmodel_parameters.coeftest model_parameters.htest
Parameters from PCA, FA, CFA, SEMmodel_parameters.lavaan model_parameters.principal
Parameters from multiply imputed repeated analysesmodel_parameters.mira
Parameters from multinomial or cumulative link modelsmodel_parameters.mlm
Parameters from Meta-Analysismodel_parameters.rma
Parameters from robust statistical objects in 'WRS2'model_parameters.t1way
Parameters from Zero-Inflated Modelsmodel_parameters.zcpglm
Find number of clusters in your datan_clusters n_clusters_dbscan n_clusters_elbow n_clusters_gap n_clusters_hclust n_clusters_silhouette
Number of components/factors to retain in PCA/FAn_components n_factors
Calculate calibrated p-values.p_calibrate p_calibrate.default
Probability of Direction (pd)p_direction.lm
p-value or consonance functionconfidence_curve consonance_function p_function
Practical Significance (ps)p_significance.lm
p-valuesp_value p_value.default p_value.emmGrid
Type of model parametersparameters_type
Pool Model Parameterspool_parameters
Predict method for parameters_clusters objectspredict.parameters_clusters
Sample data setqol_cancer
Summary information from random effectsrandom_parameters
Dimensionality reduction (DR) / Features Reductionreduce_data reduce_parameters
Reshape loadings between wide/long formatsreshape_loadings reshape_loadings.data.frame reshape_loadings.parameters_efa
Automated selection of model parametersselect_parameters select_parameters.lm select_parameters.merMod
Simulated draws from model coefficientssimulate_model simulate_model.default
Simulate Model Parameterssimulate_parameters simulate_parameters.default
Sort parameters by coefficient valuessort_parameters sort_parameters.default
Standard Errorsstandard_error standard_error.default standard_error.factor
Get Standardization Informationstandardise_info standardize_info standardize_info.default
Parameters standardizationstandardise_parameters standardise_posteriors standardize_parameters standardize_posteriors