Package: modelbased 0.8.8

Dominique Makowski

modelbased: Estimation of Model-Based Predictions, Contrasts and Means

Implements a general interface for model-based estimations for a wide variety of models, used in the computation of marginal means, contrast analysis and predictions. For a list of supported models, see 'insight::supported_models()'.

Authors:Dominique Makowski [aut, cre], Daniel L├╝decke [aut], Mattan S. Ben-Shachar [aut], Indrajeet Patil [aut]

modelbased_0.8.8.tar.gz
modelbased_0.8.8.zip(r-4.5)modelbased_0.8.8.zip(r-4.4)modelbased_0.8.8.zip(r-4.3)
modelbased_0.8.8.tgz(r-4.4-any)modelbased_0.8.8.tgz(r-4.3-any)
modelbased_0.8.8.tar.gz(r-4.5-noble)modelbased_0.8.8.tar.gz(r-4.4-noble)
modelbased_0.8.8.tgz(r-4.4-emscripten)modelbased_0.8.8.tgz(r-4.3-emscripten)
modelbased.pdf |modelbased.html
modelbased/json (API)
NEWS

# Install modelbased in R:
install.packages('modelbased', repos = c('https://easystats.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/easystats/modelbased/issues

On CRAN:

contrast-analysiscontrastseasystatsestimateggplot2hacktoberfestmarginalmarginal-effectsmeanspredict

27 exports 229 stars 6.02 score 6 dependencies 3 dependents 12.8k downloads

Last updated 10 days agofrom:aacd7e7343b4cebd088f77fdfb25989c49f09075

Exports:describe_nonlinearestimate_contrastsestimate_expectationestimate_grouplevelestimate_linkestimate_meansestimate_predictionestimate_relationestimate_responseestimate_slopesestimate_smoothfind_inversionsget_emcontrastsget_emmeansget_emtrendsget_marginaleffectsmodel_emcontrastsmodel_emmeansmodel_emtrendsprint_mdreshape_grouplevelsmoothingstandardizeunstandardizevisualisation_matrixvisualisation_recipezero_crossings

Dependencies:bayestestRdatawizardeffectsizeinsightparametersperformance

Overview of Vignettes

Rendered fromoverview_of_vignettes.Rmdusingknitr::rmarkdownon Jun 11 2024.

Last update: 2022-05-26
Started: 2022-05-26

Readme and manuals

Help Manual

Help pageTopics
Describe the smooth term (for GAMs) or non-linear predictorsdescribe_nonlinear describe_nonlinear.data.frame estimate_smooth
Estimate Marginal Contrastsestimate_contrasts
Model-based response estimates and uncertaintyestimate_expectation estimate_link estimate_prediction estimate_relation estimate_response
Group-specific parameters of mixed models random effectsestimate_grouplevel reshape_grouplevel
Estimate Marginal Means (Model-based average at each factor level)estimate_means
Estimate Marginal Effectsestimate_slopes
Find points of inversionfind_inversions
Easy 'emmeans' and 'emtrends'get_emcontrasts get_emmeans get_emtrends model_emcontrasts model_emmeans model_emtrends
Easy marginaleffectsget_marginaleffects
Smoothing a vector or a time seriessmoothing
Create a reference gridvisualisation_matrix visualisation_matrix.data.frame visualisation_matrix.factor visualisation_matrix.numeric
Visualisation Recipe for 'modelbased' Objectsvisualisation_recipe.estimate_grouplevel visualisation_recipe.estimate_means visualisation_recipe.estimate_predicted visualisation_recipe.estimate_slopes
Find zero crossings of a vectorzero_crossings